ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Variance, Covariance
    Mathematics 2020. 11. 3. 15:50

    Variance

    $= \sqrt{\mathrm{std}}$

    $ \sigma_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 $

     

    Covariance

    $ \sigma(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) $

     

    Covariance Matrix 

    Example of a 2d covariance matrix:

    $ C = \begin{bmatrix} \sigma(x,x) & \sigma(x,y) \\ \sigma(y,x) & \sigma(y,y) \\ \end{bmatrix} $

     

    Diagonal Covariance Matrix 

    Example of a 2d diagonal covariance matrix:

    $ C = \begin{bmatrix} \sigma(x,x) & 0 \\ 0 & \sigma(y,y) \\ \end{bmatrix} $

     

     

    Reference

    datascienceplus.com/understanding-the-covariance-matrix/

    'Mathematics' 카테고리의 다른 글

    Bayes’ Theorem  (0) 2020.12.04
    Intuition behind the dot product  (0) 2020.11.03
    Entropy vs Cross Entropy  (0) 2020.11.03

    Comments