-
Variance, CovarianceMathematics 2020. 11. 3. 15:50
Variance
$= \sqrt{\mathrm{std}}$
$ \sigma_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 $
Covariance
$ \sigma(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) $
Covariance Matrix
Example of a 2d covariance matrix:
$ C = \begin{bmatrix} \sigma(x,x) & \sigma(x,y) \\ \sigma(y,x) & \sigma(y,y) \\ \end{bmatrix} $
Diagonal Covariance Matrix
Example of a 2d diagonal covariance matrix:
$ C = \begin{bmatrix} \sigma(x,x) & 0 \\ 0 & \sigma(y,y) \\ \end{bmatrix} $
Reference
'Mathematics' 카테고리의 다른 글
Bayes’ Theorem (0) 2020.12.04 Intuition behind the dot product (0) 2020.11.03 Entropy vs Cross Entropy (0) 2020.11.03