-
Intuition behind the dot productMathematics 2020. 11. 3. 14:59
The dot product tells you what amount of one vector goes in the direction of another. This can also be interpreted as a similarity between the two vectors.
The dot product of $\vec{a} = < a_1, a_2 >$ and $\vec{b} = < b_1, b_2 >$ can be represented as follows:
$ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \mathrm{cos}(\theta) $
$ \quad\quad = a_1 b_1 + a_2 b_2 $
$ \quad\quad = \vec{a} \vec{b}^T $
'Mathematics' 카테고리의 다른 글
Variance, Covariance (0) 2020.11.03 Entropy vs Cross Entropy (0) 2020.11.03 Kullback-Leibler (KL) divergence (0) 2020.11.03